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ABSTRACT

Some aspects of the numerical solution of the Tricomi

equation

y* - , =0o (1)
xx yy

and the inverted Tricomi equation

y - . 0 (2)
yy xx

with particular emphasis on periodic problems are studied.
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SIGNIFICANCE AND EXPLANATION

We consider in this paper some aspects of the numerical

solution of the Tricomi equation

Y xx -yy

and the inverted Tricomi equation

y* - =0 (2)
Syy xx

with particular emphasis on periodic problems. These periodic

problems are of actual physical interest: the former is a model

for the deflection of a floppy disc considered as a rotating

membrane, while the latter is a model for the transonic deLaval

nozzle. Since most studies of the Tricomi equations have been in

domains bounded by one or more characteristics, such periodic

problems offer some different viewpoints and some different

qualitative insight into these mixed elliptic-hyperbolic

equations.

We shall test out various numerical schemes on these two

problems. These equations being linear, many mathematical

questions, e.g. unique solvability, convergence, etc., can be

easily answered on these model problems that would help shed

light on actual nonlinear numerical procedures, say, those used

- nsonic flow. We shall concentrate on the unique

solvability of the algebraic equations, and expect convergence

-tc. can be studied equally readily.

The nesponsibility for the wording and views expressed in this
descriptive summary lies with MRC, and not with the authors of

this report.
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SOME REMARKS ON THE NUMERICAL SOLUTION OF TRICOMI-TYPE EQUATIONS

C. K. Chut, L. W. Xiang and Z. K. Yao

1. INTRODUCTION

We consider in this paper some aspects of the numerical

solution of the Tricomi equation

Yoxx - = 0()

and the inverted Tricomi equation

Y=yy - xx 0 (2)

with particular emphasis on periodic problems. These peri-

odic problems are of actual physical interest: the former

is a model for the deflection of a floppy disc considered as

a rotating membrane, while the latter is a model for the

transonic deLaval nozzle. Since most studies of the Tricomi

equation have been in domains bounded by one or more charac-

teristics, such periodic problems offer some different view-
points and some different qualitative insight into these

mixed elliptic-hyperbolic equations.

We shall test out various numerical schemes on these

two problems. These equations being linear, many mathema-

tical questions, e.g. unique solvability, convergence, etc.,

can be easily answered on these model problems that would

help shed light on actual nonlinear numerical procedures,

say, those used in transonic flow. We shall concentrate on

the unique solvability of the algebraic equations, and expect

convergence etc. can be studied equally readily.

tPartially supported by USDOE Contract No. DE-AC 02-76ET53016 at

Columbia University.

Sponsored by the Untied States Army under Contract No. DAAG29-80-
C-0041.



2. THE PERIODIC TRICOMI PROBLEM AND FLOPPY DISC

A rotating circular membrane clamped at the inner edge

r = a and loaded with a transverse force (fig. 1) is des-

cribed by the following equation III
21 2 1 2_

(1-rW) wrr - - wr 2 (Jr - 1) WOr o F (3)

Here w is the (small) deflection transverse to the disc,

0 is the usual angular coordinate, r the radial coordinate

normalized with respect to the outer radius, and the driving

term F contains the loading force per unit area, angular

velocity, disc thickness, and material constants. The

appropriate boundary conditions are

w (a,e) = 0

w (1,6) < (4)

w (r,0) f w(r,0 + 2i7)

expressing, respectively, clamping at the inner edge, finite

deflection at the outer edge, and periodicity in O. The

equation is very interesting in that it is elliptic in the
region a < r <1/44 , hyperbolic in the region I//r < r < 1,

and degenerate parabolic ou the transition line r = l/r3

and again on the outer edge r = 1. The characteristics in

the hyperbolic region have the general shapes shown in fig. 1.

b

0 Ch racter-
is ics

Hyp lic
a-a

\\ / ; llip ic

Fig. 1. (Left) Geometry of floppy disc problem

(Right) Model using Tricomi equation
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This problem can obviously be modeled by the following

periodic problem for the Tricomi equation: 0 is to satisfy

equation (1) in the domain -< <x < + , -a < y < +b and the

boundary conditions

0p (or *y) prescribed at y = -a, y = +b (5)
0 (x,y) y= (x+2ff , y)

The modeling is not exact in that the inessential first deri-

vative term in (3) is discarded and that the outer boundary

* y = +b is not a degenerate parabolic line any more. Other

than that, the essential features, including the shape of

the characteristics, are all properly modeled. The inhomo-

geneous differential equation (3) with homogeneous boundary

conditions (4) has also been changed to the homogeneous

equation (1) and inhomogeneous boundary conditions (5), the

equivalence of these problems being well known.

The problem is obviously treated by separation of vari-

ables. Letting
inx

One

the Fourier component On for each wave number n (n> 0)

satisfies an Airy equation

On + n2 y C = 0 (6)

The solution to (6) is given in terms of the Airy functions

n= An Ai(z) + Bn Bi(z) (7)

where z =n 2 /3 y and A B are arbitrary constants. For

n - 0, 0o f Ao + Boy trivially. For large z, the functions

, Ai(z) and Bi(z) behave like slightly damped exponentials

or slightly damped sinusoids, depending on whether z is

positive or negative:

1 r -1/4 -(2/3)z3/2Ai(z) " 2 n , Z . 0

I -I/.1 2 3/2 ,
/7(-Z) sin { (-z) + V z < 0

i(z) 1 Z-1/4 e*(2/3)z3/
2  > 0(8)

% (-z)-1/4 cos { (-z) 3 /2 + 0

-3-
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The boundary conditions to be satisfied by tn are the n-th

Fourier coefficients of the given data at y = -a and +b.

Thus, the problem is uniquely solvable if and only if the

determinant

2/3 2/3
Ai(n 2 /3 a) Bi(n a) 0 (9)
Ai(n-2/ 3b) Bi(n-2/ 3b)

For large n , this is approximately equivalent to
(4/3)na3/2  2 b 3

(3 c ( nb 3 / + )co

For given domains, condition (9) will be violated for

some very large n. Thus one may conclude that the floppy

disc problem admits no unique solution. However, the mem-

brane approximation in equation (3) is really only valid for

n not too large, say, n < N; since if the azimuthal wave

lengths become too small compared to the radial dimension

of the disc, the membrane approximation fails as bending must

now be taken into account. With the limitation of n < N

then the periodic problem in general has a unique solution

provided (9) is satisfied. For example, if a = b = 1

actual calculation shows that (9) is still satisfied for n

as high as 100.

3. THE INVERTED TRICOMI EQUATION AND THE NOZZLE PROBLEM

The converging-diverging nozzle, in which a gas expands

from subsonic velocity to supersonic velocity, can obviously

be viewed also as a periodic problem, if we introduce poten-

tial or streamline coordinates, in which the walls would be

either constant function values or zero normal derivatives

and thus the function can be extended to a periodic function

in the usual elementary way. If, as is often tempting to do,

we try to think of modeling the nozzle flow by the Tricomi

equation, then the arguments of the previous section would

convince us that two boundary conditions are needed, one at

the subsonic upstream and one at the supersonic downstream.

but in fact, this is never the case in practice: a supersonic

boundary condition is never prescribed (see e.g. 121). The

"physical"argments that signals do not propagate upstream are

inadequate to explain this discrepancy.

-4-
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The real reason is that the Tricomi equation is the

wrong model to use for transonic flow in the physical plane,

although it is the correct model in the hodograph plane. The

characteristics in the supersonic flow region, fig. 2, are

perpendicular to the streamlines at the sonic transition, and

therefore, they are almost tangent to the transition line.

The characteristics of the Tricomi equation, on the contrary,

are perpendicular to the transition line, as in fig. 1. Thus

for calculating in the physical plane, the Tricomi equation

does not model the nozzle flow problem correctly. In fact,

the inverted Tricomi equation (2) is the right model to study.

In his book 131 Tricomi also considered the inverted Tr-

comi equation but stated that the equation did not seem to

have a physical application. The present model appears to

be indeed such an application.

The proper periodic boundary value problem for the

inverted Tricomi equation (2) is: * is to satisfy (2) in

tihe domain - x < , -a < y < b and the buundary condi-

tions

0 or *y prescribed at y = -a

No data to be prescribed at y - +b (10)

* (xy) = O(x+27i, y)

Again letting e inx , the equation satisfied by each

nis now

Yon" + n on = (1

In the neighborhood of v = 0, elementary series methods give

two linearly indeper.ient scl ti.ons for each n f 0:
=-n
2 y n4  2  n6  y3

On 2 3!2 43!j : ( ) (1)(12)
(2 = n (1) log y

Since the derivatives of model velocity components, we re-

quire that they be square-integrable. The solution n

fails to satisfy this requirement, and must be rejected. We

are then left with one solution in (12), corresponding to

Lhe one boundary condition at y - -a and no boundary condi-

tion at y = +b. That the converse cannot be prescribed is

-5-



based on the ellipticity or hyperbolicity of the original
partial differential equation, and cannot be seen from such
a simple argument as just presented.

On the other hand, for n = 0, we have *o = C1 
+ C2y.

C2  is determined from the Fourier coe'fients of the given
data at y - -a, just as all the coefficients of the no ntO,
are determined. C1 is determined by prescribing the average
value of O(x,O) on the transition line, where 0 = 0 and

p is a linear function in x.

Fig. 2. Sketch of deLaval nozzle showing

transition line and characteristics.

ty
4-11

U- -- 1 I U
ION

n rows
I ,/

-m rows

Fig. 3. Domain and grid for inverted
Tricomi equation in model nozzle prob-
1lem.
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4. FINITE DIFFERENCE SOLUTION OF THE MODEL NOZZLE PROBLEM

We apply the method of Murman and Cole 141 to the model

nozzle problem with the inverted Tricomi equation. We lay

down a finite difference grid (fig. 3) of grid width Ax and

Ay respectively, in which the line y = 0 is a row of grid

points, to start; later on this inessential restriction will

be removed. The Murman-Cole method uses five-point centered

differences if the center point lies in the elliptic region

(as in a Laplace equation), and uses backward second differ-

ences in y if the point in question lies in the hyperbolic

region (as in an implicit scheme for the wave equation).

Thus, we have

Y~yy - 'xx " Yj(Oi,j+I +  ij-i- 2ij)

Ay2

¢i+lj + i-lj - 2i'J for yj < 0
~Ax M

Yj( i + 0ipj-2 -2 oi), .,Ji,j-l_

Ay
2

¢i+lj + i1-,j - , for yj > 0 (13)
Ax

2

We shall prescribe boundary conditions at y = -a, and

prescribe periodic boundary conditions on the side walls.

The transition line being a row of grid points, the differ-

ence equations for these points degenerate to xx = 0, ex-

actly as does the differential equation. This, together

with the side-wall periodicity requirements, yields = const

011 y = 0. From what was said about the n = 0 case in the

prcvious section, we are permitted to prescribe this constant

to, say, p(x,O) = 0.

In this simple case, the elliptic and hyperbolic regions*

completely uncouple. The difference equations in the ellip-

tic region possess a unique solution, as we shall show below.

The situation is not much different from the Laplace equation,

* rue model is too restrictive compared to the real nozzle,
in this sense. The transition line in the real nozzle is
almost a characteristic, whereas in the model it is exactly
a characteristic.

-7-



since the degeneracy on the x-axis has been properly taken

care of. Once the unique solution is obtained in the ellip-

tic region, it is trivial to show that the equations in the

hyperbolic region have unique solutions line by line (stan-

dard implicit scheme for wave equation).

To prove unique existence for the elliptic region, let

the elliptic region have m rows of interior grid points

in the x-direction, and n rows in the y-direction, fig. 3.

The difference equations for this region become

A4= f (14)
¢mn )T

where the column vector _ denotes (0Ii, 1 '0 T

and the column vector f denotes the boundary data as usual.

The matrix A has the form

Q -I 0 0 ...... 0-I

-I Q -I 0 ...... 0 0
' 1

A 7 1 0 -I Q -I ...... 0 0 (15)
Ax ............

-I 0 0 0 .... -I Q

where submatrices Q and I are n x n matrices, and there

are m x m of them to make up A.

For Neumann data on y = -a, the matrix Q is

nr+2 -nr 0 0 ........ 0

-(n-l)r 2(n-l)r+2 -(n-1)r 0 ........ 0

Q = 0 -(n-2)r 2(n-2)r+2 -(n-2)r .. 0 (16)

0 0 0 .... -2r 4r+2 -2r

0 0 0 .... 0 -r 2r+2

where r = Ax2 / Ay. For Dirichlet data on y = -a, Q is

the same matrix as (16), except that the first element Q

is replaced by 2nr+2.

We now use a theorem of Taussky-Todd 151 , which states

that for irreducible matrices M, with positive diagonal ele-

ments. M >0, and nonpositive off-diagonal elements, M < 0

-8-



for X , M is singular if and only if m = 0 for

every A Our matrix A for both Neumann and Dirichlet

data on y = -a satisfies all these conditions, except

Ip AXP 0 for X = n, 2n, ... mn. Hence A is nonsingu-

lar, and the unique solvability of the difference equations

in the elliptic region is proved.

The condition that y = 0 be a row of grid points will

now be removed. To this end, let the transition line y = 0

be at a distance aAy from the last elliptic row (j = n)

and a distance of (]-a)Ay from the first hyperbolic row

(j = n+l), where 0< a <z . Defining (l-a)i,n+ Oi,n+l = il

substituting j = n and j = n+l into the first and second

forms of (13) respectively, and adding them properly, we get

Si+1 + i-l - =

Obviously, i is the interpolated value for *(x,O), and

* this equation approximates x = 0 on y = 0. This equation

should be solved first, again with periodicity conditions

on the side walls, to give $i = const = 0 as in the pre-

vious case.
Then we replace 4i,n+l by -

n~l i0 n'I and again have
* just a inn x inn system of linear equations in the elliptic

region. Matrix A once more has the form given in (15),

except that Q (for Neumann data on y = -a) is now

(n-l+a)r+2 -(n-l+a)r 0 0 .... 0

-(n-2+a)r 2(n-2+a)r+2 -(n-2+a)r 0.... 0

Q = ............................

0 0 .......- (l+a)r 2(l+a)r+2 -(l+a)r

0 0 ...... 0 -ar (l+a)r+2

Again, the theorem of Taussky-Todd insures the nonsingulari-

ty of A. A similar argument also holds for Dirichlet data

on y = -a.

We conclude this section with some computed results.

* Fig. 4 shows a model nozzle for the inverted Tricomi equa-

tion, calculated with 4 = 0 on the transition line, periodic

boundary conditions on the side walls, and two cases of Neu-

|i9



mann data on y " -a: (i) Oy = 1 + cos x, and (ii) Oy
1 + cos x + sin x. Ax and Ay were taken to be 1/8 and

1/5 respectively, giving n = 4 and m = 8 in the elliptic
region. Presented in the figure are values of *y (modeling

the axial velocity) as functions of x at various values of
y. The solid curves represent the analytic solution described

in Sec. 3, while the circles are the numerical solution. The
accuracy is obviously very satisfactory.

yy

/1 (data)

x x

"- i

Mi (ii)

Fig. 4. Calculated model nozzle flow

compared with exact solution.
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a. FINITE DIFFERENCE SOLUTION FOR THE PERIODIC TRICOMI PROB-

LEM (FLOPPY DISC MODEL)

For the periodic problem of the Tricomi equation, as

described in Section 2, we recall that boundary conditions

are needed at both y = -a and y = +b, and that a unique

suLution exists only when the dUfnfl, do s not admit uigen-

solutions corresponding to wave numbers n < N. An obvious

method to solve such problems is indeed to solve equation (6)

as an ordinary differential equation, and treat the eigen-

functions as part of that problem. Here we propose, however,

an alternate procedure, starting directly with a finite

difference grid for the partial differential equation.

We denote by o(x) and 42 (x) the boundary values given

on y = -a and y = +b respectively, and we denote by 01 (x)

the function O(x,O) on the transition line. If 0, were

known, the solution of the difference equations in the ellip-

tic region will exist uniquely, since the matrix A will be

nonsingular for exactly the same reasons as with the inverted

Tricoini equation discussed in the previous section. Then we

can apply the Murman-Cole scheme in the hyperbolic region as

before, and obtain the entire solution up to O(x,b), which

should be equal to 02 (x). But O(x,b) is a linear trans-

formation of 00 (x) and of 41(x) summed, which gives pre-

cisely a condition to determine 0l(x)"

(x,b) =So + Tel 02

Or,

0 = T-I"2 - S~o) (17)

Here S and T are the matrices representing the linear

transformations, and the method works only if T has an in-

verse. This condition is exactly the finite difference coun-

terpart of the nonoccurrence of the eigenfunctions.

In actual computations, we first solve the entire prob-

lem with 01(x) = U, and get (x,b) = S o . We then solve a

series of problems, using o = U, and

(i = (0 '0 '.... IO ,.. ) i = ,. .m

(ie , (i) has I in the i-th place and 0 elsewhere).
1pit,



T is constructed in a simple manner from the solutions of

these problems at y = b. The nonsingularity of T is pre-

cisely the criterion for the unique solvability of the entire

problem.

Using this procedure, we calculated an example using *(x,

b)- 02 (x) - 1 + sin x and O(x,-a) - *o(x) = 1+ cos x. The

results are shown in Fig. 5. Again, the solid curves are the

exact solutions from Sec. 2, and the circles are the computed

results. The accuracy is again satisfactory.

Whether or not this procedure is more efficient than solv-

ing the ordinary differential equations is debatable, but this

procedure is interesting in its own right, and permits a com-

pletely different way to look at the problem.

y= 1

(data)

y 0.4

* .1.

Fig. 5. Calculated

_ _ _ " _ _periodic Tricomi

y -problem versus exact

(dat solution.

-,.t -r/2 0 r/2 ix
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